skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sodré, Laerte"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We employ the corrected Gaia Early Data Release 3 photometric data and spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR7 to assemble a sample of approximately 0.25 million FGK dwarf photometric standard stars for the 12 J-PLUS filters using the stellar color regression (SCR) method. We then independently validate the J-PLUS DR3 photometry and uncover significant systematic errors: up to 15 mmag in the results from the stellar locus method and up to 10 mmag primarily caused by magnitude-, color-, and extinction-dependent errors of the Gaia XP spectra as revealed by the Gaia BP/RP (XP) synthetic photometry (XPSP) method. We have also further developed the XPSP method using the corrected Gaia XP spectra by B. Huang et al. and applied it to the J-PLUS DR3 photometry. This resulted in an agreement of 1–5 mmag with the SCR method and a twofold improvement in the J-PLUS zero-point precision. Finally, the zero-point calibration for around 91% of the tiles within the LAMOST observation footprint is determined through the SCR method, with the remaining approximately 9% of the tiles outside this footprint relying on the improved XPSP method. The recalibrated J-PLUS DR3 photometric data establish a solid data foundation for conducting research that depends on high-precision photometric calibration. 
    more » « less
  2. Abstract We present a catalog of stellar parameters (effective temperatureTeff, surface gravity log g , age, and metallicity [Fe/H]) and elemental-abundance ratios ([C/Fe], [Mg/Fe], and [α/Fe]) for some five million stars (4.5 million dwarfs and 0.5 million giant stars) in the Milky Way, based on stellar colors from the Javalambre Photometric Local Universe Survey (J-PLUS) DR3 and Gaia EDR3. These estimates are obtained through the construction of a large spectroscopic training set with parameters and abundances adjusted to uniform scales, and trained with a kernel principal component analysis. Owing to the seven narrow/medium-band filters employed by J-PLUS, we obtain precisions in the abundance estimates that are as good as or better than those derived from medium-resolution spectroscopy for stars covering a wide range of the parameter space: 0.10–0.20 dex for [Fe/H] and [C/Fe], and 0.05 dex for [Mg/Fe] and [α/Fe]. Moreover, systematic errors due to the influence of molecular carbon bands on previous photometric-metallicity estimates (which only included two narrow/medium-band blue filters) have now been removed, resulting in photometric-metallicity estimates down to [Fe/H] ∼ −4.0, with typical uncertainties of 0.40 dex and 0.25 dex for dwarfs and giants, respectively. This large photometric sample should prove useful for the exploration of the assembly and chemical-evolution history of our Galaxy. 
    more » « less
  3. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru's prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation. 
    more » « less